Math 656 • Midterm Examination • March 27, 2015 • Prof. Victor Matveev

No electronic devices allowed. Please show all solution steps to receive full credit

1) (14pts) Find all values of z in polar or Cartesian form, and plot them as points in the complex plane:
(a) $z=\frac{(1+\sqrt{3} i)^{1 / 2}}{i^{1 / 3}}$
(b) $z=\cosh ^{-1}(i) \quad$ (start from the definition of $\left.\cosh z\right)$
2) (13pts) Sketch the image of a square defined by vertices $z=i, z=0, z=1$ and $z=1+i$ under the mapping $w=\frac{1+i}{\sqrt{2}}(\bar{z})^{2}$. Hint: treat this mapping as a sequence of 3 simple transformations.
3) (21pts) Use an appropriate method to calculate each integral over the indicated contour
(a) $\oint_{|z-1|=2} \frac{\cos z d z}{z^{2}\left(z^{2}-4\right)}$ Integral over a circle of radius 2 around point $z=1$
(b) $\oint_{|z|=1} \frac{z d z}{\left(e^{z}-1\right)^{2}}$ Integral over a circle of radius 1 (hint: find a couple dominant terms in the Laurent series)
(c) $\int_{C} \cosh \left(\log _{\pi} \bar{z}\right) d z \quad \mathrm{C}=$ semi-circle in the right half-plane of radius 1 centered at the origin and connecting point $-i$ to point $+i$. Use the principal branch of the logarithm $\log _{\pi} z$ defined by $-\pi \leq \arg _{\pi} z<\pi$.
4) (13pts) Find an upper bound for $\left|\int_{C} \frac{e^{i z} \log _{o} z d z}{z^{2}+4}\right|$, where the integration contour C is a straight line connecting point $z=i$ to point $z=1$ (assume $0 \leq \arg _{0} z<2 \pi$). Hint: treat each of the three factors separately.
5) (13pts) Find the first three dominant terms in the Taylor series for function $f(z)=\frac{1}{1+\log _{\pi} z}$ near point $z=1$; indicate where the full series would converge. Use the branch of logarithm $-\pi \leq \arg _{\pi} z<\pi$.
======================= Pick any two problems between 6, 7, 8 =======================
6) (13pts) Suppose a given Laurent series $\sum_{k=-\infty}^{+\infty} c_{k}\left(z-z_{o}\right)^{k}$ has a maximal domain of convergence described by $0<r<\left|z-z_{o}\right|<R$. Does the principle part of this series converge anywhere outside this ring? What about the positive-power part, $\sum_{k=0}^{+\infty} c_{k}\left(z-z_{o}\right)^{k}$?
7) (13pts) Find all series representations centered at $z_{0}=i$ for function $f(z)=\frac{1}{(z-i)^{2}(z+1)}$, and indicate their respective domains of convergence. Note: partial fractions are not needed in this problem (this problem is somewhat easier than the similar homework problem that we had).
8) (13pts) Make a rough sketch of the domain of convergence of the series $\sum_{k=0}^{+\infty} \frac{\left(\log _{\pi} z\right)^{k}}{k^{2}}$
