Math 656 • Midterm Examination • March 27, 2015 • Prof. Victor Matveev No electronic devices allowed. Please show all solution steps to receive full credit

1) (14pts) Find all values of z in polar or Cartesian form, and plot them as points in the complex plane:

(a)
$$z = \frac{\left(1 + \sqrt{3}i\right)^{1/2}}{i^{1/3}}$$
 (b) $z = \cosh^{-1}(i)$ (start from the definition of $\cosh z$)

- 2) (13pts) Sketch the image of a square defined by vertices z=i, z=0, z=1 and z=1+i under the mapping $w = \frac{1+i}{\sqrt{2}} (\overline{z})^2$. Hint: treat this mapping as a sequence of 3 simple transformations.
- 3) (21pts) Use an appropriate method to calculate each integral over the indicated contour
 - (a) $\oint_{|z-1|=2} \frac{\cos z \, dz}{z^2 (z^2 4)}$ Integral over a circle of radius 2 around point z=1
 - **(b)** $\oint_{|z|=1} \frac{z \, dz}{\left(e^z 1\right)^2}$ Integral over a circle of radius 1 (hint: find a couple dominant terms in the Laurent series)
 - (c) $\int_{C} \cosh(\log_{\pi} \overline{z}) dz$ C = semi-circle in the right half-plane of radius 1 centered at the origin and connecting point -i to point +i. Use the principal branch of the logarithm $\log_{\pi} z$ defined by $-\pi \le \arg_{\pi} z < \pi$.
- 4) (13pts) Find an upper bound for $\left| \int_{C} \frac{e^{iz} \log_{o} z \, dz}{z^{2} + 4} \right|$, where the integration contour *C* is a straight line connecting point *z*=*i* to point *z*=1 (assume $0 \le \arg_{o} z < 2\pi$). Hint: treat each of the three factors separately.
- 5) (13pts) Find the first three dominant terms in the Taylor series for function $f(z) = \frac{1}{1 + \log_{\pi} z}$ near point z=1; indicate where the full series would converge. Use the branch of logarithm $-\pi \le \arg_{\pi} z < \pi$.

- 6) (13pts) Suppose a given Laurent series $\sum_{k=-\infty}^{+\infty} c_k (z-z_o)^k$ has a maximal domain of convergence described by $0 < r < |z-z_o| < R$. Does the principle part of this series converge anywhere outside this ring? What about the positive-power part, $\sum_{k=0}^{+\infty} c_k (z-z_o)^k$?
- 7) (13pts) Find *all* series representations centered at $z_0 = i$ for function $f(z) = \frac{1}{(z-i)^2(z+1)}$, and indicate their respective domains of convergence. Note: partial fractions are not needed in this problem (this

their respective domains of convergence. Note: partial fractions are not needed in this problem (this problem is somewhat easier than the similar homework problem that we had).

8) (13pts) Make a rough sketch of the domain of convergence of the series $\sum_{k=0}^{+\infty} \frac{(\log_{\pi} z)^k}{k^2}$